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Bl - Spacecraft experience
varying thermal
environments

B - Radiators are sized to

B reject the maximum
heat load, resulting in
non-ideal radiator heat

loss for a portion of the
spacecraft’s lifetime




Variable Radiative Surfaces - Application

A radiator capable of varying its thermal radiative properties would
reject the ideal amount of heat to the environment at all times
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Variable Radiative Surfaces - Application

* Variable Emissivity Devices would save weight and power
» 5-7% of spacecraft power is heater related?!
» 2-10% of spacecraft dry weight is thermal control?
» Expected power savings from variable emissivity: 90 - 75%!

* Variable Emissivity Devices would be especially useful for smaller
spacecraft, such as CubeSats
« Smaller thermal mass means larger temperature swings
* Less power available for heaters
» Higher watt density due to compact electronics

How do we modify radiative heat transfer in real time?

] — Gilmore, David G. “Spacecraft Thermal Control Handbook: Technology Projections.” 2002. 2" Edition.



« Reflections inside a cavity result in increased apparent absorptivity
« Apparent properties depend on cavity geometry
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« A cavity concentrates emission from all internal surfaces to the cavity
opening, increasing the apparent emission from the opening
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The Cavity Effect - Benefits

Different surfaces give different performance
Deep cavities result in near black behavior

Cavity emission is highly directional, allowing for control of
directional radiative heat transfer
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« Origami tessellations control cavity aspect ratio through actuation
« But what are the apparent radiative properties?
« How would these be applied to areal scenario?




Research Objectives

1. Demonstrate a change in apparent properties with geometry

2. Characterize the apparent emissivity and apparent absorptivity of
four tessellations

3. Validate the ability of a dynamically-actuated tessellation to control
temperature when exposed to a varying thermal environment.

4. Develop initial radiator prototypes



Demonstrate a change in apparent properties with geometry

OBJECTIVE 1
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Sample

A piece of aluminum shim stock folded into an accordion tessellation
was repeatedly heated and cooled in ambient conditions

The cooling temperature curve gave information about heat losses
The heating energy balance gave an expression for absorptivity
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Objective 1 — Results

* Inverse model results? were compared to Sparrow’s work?
 Apparent absorptivity increase is experimentally verified

g 100 < v

E ° oﬂ?rl\rnoovésel > Sparrow’s Equations
o 80 L ' 2, =1-(1-aX")(1-a)"
7] p . a

g ’%D where :

- 60 f .

: o3
T _ | X' 2
w40 (x ) ) ) S‘”Wj

o ' 2

o)

8 20 {180 1J

: N=| —+—

Q ¢ 2

o 0 | , | s

o 0 50 100 150

V-Groove Angle, (¢) [°]

[2] — Mulford et al. “Dynamic control of radiative surface properties with origami-inspired design" 2016. JHT. 13
[3] — Sparrow and Lin. “Absorption of thermal radiation in a V-groove Cavity.” 1962. [IJHMT 5.



Characterize the apparent radiative properties of four origami
tessellations

OBJECTIVE 2
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« Models must be developed to characterize the apparent
radiative properties of origami tessellations

Accordion

Apparent Top Surface

« Benefits
— Easy to fold, similar to infinite V-groove.
— Collapses and expands, allowing for storage
— Easy to model and test



Objective 2 - Definition

Hinged V-groove

* Benefits
— Maintains a constant projected surface area while actuating
— Two geometry parameters for control



Objective 2 - Definition

Miura-Ori
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« Benefits
— Linear actuation results in 3D movement
— Three geometry parameters for control
— Collapses and expands, allowing for storage



Objective 2 - Definition

Barreto’s Mars

 Benefits

— Cauvities collapse to one side, giving a large absorptivity in one direction
and great reflectivity in the other direction

— Collapses to a finite area
— Would give interesting directional behavior



Rays are emitted from a surface or irradiated onto a surface.
This approximates an isothermal surface (for emission).
The number of rays emitted (N.;) and the number of rays

absorbed by the cavity (N
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Objective 2 — Results: Ray Tracing

Infinite V-groove
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 Accordion fold results will be similar to infinite V-groove but will
depend on the length of the panels as well.
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Validate the ability of a dynamically-actuated tessellation to control
temperature when exposed to a varying thermal environment.

OBJECTIVE 3
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Objective 3 - Definition

« This work will explore the use of origami tessellations as variable
emissivity radiators for spacecraft applications

« To this end, two experiments will be conducted

— Quantify the net rate of radiative heat exchange with the surroundings

— Validate the ability of the surface to maintain a given thermal condition in
a changing thermal environment

4
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« Consider a flat or folded tessellation subjected to uniform heat
generation inside of a vacuum environment.
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Diffuse or Collimated Irradiation / Diffuse or Specular Reflection
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» Experimental methods are used to validate the model.

« A sample is heated internally in a vacuum chamber evacuated to
below 10-° Torr. A thermal camera records apparent temperature
data through the sapphire window.
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* Diffuse reflection: net radiative heat transfer decreases as the
tessellation collapses despite increasing radiative properties

« Specular reflection and collimated irradiation: large changes in
radiative properties over small periods are possible
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« A motorized accordion fold is exposed to varying levels of
environmental radiation

« The fold is actuated to the proper cavity angle to maintain steady

state conditions
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Develop Initial Radiator Prototypes

OBJECTIVE 4
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Objective 4 — Final Design Considerations

How do you get the waste heat to the radiator?
How will heat conduct along/between panels?
How will the tessellations be actuated?




« Radiator could be built into an existing panel
« The modified V-groove maintains a constant surface area

« Heat pipes bring the heat load from the spacecraft or heat is
present on the back of the panel
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Objective 4 - Radiator Concept #2

Benefits:

1) Low weight
due to the
compliant

hinge

Hinge
Assembly
(Below)

Thin, coated Challenges:
aluminum sheet

(for rigidity) 1) Re qllil' es
constraint
VERY conductive filler (heat pipes, carbon :
sheets, etc.) - 2) Requlres
conductive,

Compliant Conducting compliant
Material material

Shape Memory

|

Bias Spring (if needed.
Compliant material
should be spring)




« What is the fin efficiency?
« Consider panel width, length, thickness, etc.

B Compliant Hinge
Aluminum Plate

B Shape Memory Alloy

TFAWS 2017 — August 21-25, 2017 34
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FUTURE WORK



Moderately shallow cavities exhibit highly directional behavior,
largely ignoring emission and absorption at glancing angles

This could be utilized to ignore unwanted inputs (solar, albedo,
instrument heat loss, etc.)




ANALYSIS WORKSHOP
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« U(t) characterizes conductive, convective and radiative heat losses
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* Volume ratio accounts for increasing mass in control volume as
sample is actuated

« Different origami folds would have different ratios
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& Objective 1 - Approach

ANALYSIS WORKSI

« At steady state, the energy balance gives absorptivity as a function
of G, 6 and U
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« All solutions require experimental temperature
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« Validate the use of origami tessellations as variable emissivity surfaces

« Experimentally determine the apparent absorptivity of an accordion fold
as a function of angle
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Integrating Factor

Direct Method
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Objective 1 — Results

Flat sample was measured with a reflectometer
Independent verification of inverse model results

Spectral Range (Micrometers)
Test # 1.5-2.0 20-35 3.0-4.0 40-5.0 50-105 | 10.5-21.0
Spectral Reflectivity
1 0.965 0.969 0.966 0.977 0.982 1.005
2 0.967 0.972 0.971 0.973 0.983 1.01
3 0.965 0.969 0.973 0.977 0.98 0.986
Emissometer Absorptivity 0.028 6
> OlZZFi(l—,O“)
Steady State Model Absorptivity 0.028 )
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Objective 1 — Approach

Insulated
. Shutter Thermocouples
T=1000" C Air Piston — i
Folded
Insulation Shield — Sample
| J
|
15.25cm

G




« Apparent absorptivity results with respect to time for the three methods
« All solutions converge to one value
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Qemit = Qabsorb + Qescape
4
Qemit = gO-AemitT

4
Qescape = gaG'AbpeningT
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Rearrange to give apparent emissivi}ty-
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[1] - Ohwada, Y. 1988 “Mathematical proof of an extended Kirchoff
Law for a cavity having direction-dependent characteristics” Journal
of the Optical Society of America 5(1). 141-145.




« Apparent emissivities below the intrinsic surface value are a result of
the area of the sides

« Values above unity are not possible and are due to large error
experienced at very small angles and high emissivities
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Results - Accordion

» All cases showed a convergence of 0.2% or less. The extreme
cases are shown here (L/S =1 or 5 and emissivity = 0.028 or
0.9)
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